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Abstract—This paper focuses on the detection of radar signals
within the shared spectrum, such as the Citizen Broadband
Radio Service band, employing machine learning methodolo-
gies. The study investigates the influence of various types of
synthetic noise on the spectrum, thereby affecting the accuracy
of signal detection in shared regions. Our approach involves
the utilization of a YOLOv5-based object detection method,
where a trained model is generated using clean spectrograms
as input. The trained model is then evaluated for their detection
performance under diverse noise conditions. The analysis reveals
that an extremely noisy environment leads to a detection failure
of 0%, while low noise conditions remain tolerable without
any noticeable performance degradation. This study provides
valuable insights into the robustness of machine learning-based
radar signal detection in real-world, noisy scenarios within shared
spectrum environments.

I. INTRODUCTION

Necessity of spectrum learning in shared band. The 3.5
GHz Citizen Broadband Radio Service (CBRS) band has
recently been opened by the Federal Communication Commis-
sion to secondary users, including cellular service providers,
private networks, and IoT applications on conditional access
by safeguarding primary users’ (naval radar) activities [1]. To
detect the radar activity in this band, the Spectrum Access
System (SAS) communicates regularly with Environmental
Sensing Capability (ESC) stations near coastal regions, with
ESC certification requiring 99% accuracy and detection of
radar pulse bursts within 5 seconds [2]. Achieving this con-
straint is difficult due to the various noises received at the ESC
along with present signals which can decrease the accuracy
of radar signal detection. Consequently, this challenge has
sparked considerable interest within the research community,
prompting investigations into the prospect of leveraging ma-
chine learning methods based on object detection. The goal is
to learn the spectrum effectively, enabling the earlier detection
of radar activity compared to traditional methods.
State-of-the-art for radar detection using spectrum learn-
ing. In that direction, the state of the art (Waldo [3], Deep-
Radar [2] and RadYoloLet [4]) use the variation of the widely
used object detection based machine learning algorithm You
Only Look Once (YOLO) to detect radar signals in the CBRS
band from spectrograms generated at the ESC sensor. All these
approaches consider the interference in the CBRS band in
terms of 5G and LTE signals.
Consideration of added noise at the ESC sensors. The
current studies have not experimented with the possibility
of the spectrogram images getting degraded with different
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Fig. 1. The pipeline for Speclearn framework.

noise conditions at the ESC sensors. The noise can be in
the form of Gaussian noise generated at the radio receiver
in the ESC sensors [5]. Additionally, noise can manifest in
the generated spectrogram images from the received signals
at the ESCs. These distortions in the images occur due to the
interference in the transmission channel in the form of Speckle
and Salt&Pepper noise [6].
Speclearn framework. In Speclearn, we consider various un-
foreseen noisy conditions during the inference or deployment
time. As shown in Fig. 1, we train a deep learning based model
on the clean spectrograms and expose the trained model to
different noisy conditions. Our contributions are:
(C1) Creation of a robust pipeline for radar detection based on
spectrogram analysis in challenging, noisy environments. The
proposed approach involves training a single-stage YOLO-
based machine learning model on clean spectrograms.
(C2) Introduction of various synthetic noise conditions to
emulate the complex and noisy conditions at the ESC sensors.
(C3) Execution of a comprehensive experimental analysis
of the proposed approach on publicly available dataset of
synthetic spectrograms in the CBRS band.

II. EXPERIMENTS

A. Speclearn Framework
The conceptual overview of our proposed framework is

illustrated in Fig. 1. We design the framework to examine
scenarios where arbitrary noises could potentially impact the
system. Our experimentation involves the introduction of three
types of widely explored synthetic noises: Gaussian, Speckle,
and Salt&Pepper noises. For each of these noise types, we
establish three distinct levels—low, medium, and high by vary-
ing the variance. Employing a single-stage YOLOv5 model



Table I: Performance of training the YOLOv5 model on clean spectrograms.

Metric Signal Type
Radar 5G LTE

Recall 0.943 0.985 1
Precision 0.947 0.991 0.981
Mean Average Precision 0.986 0.984 0.99

trained on clean or no-noise signals, we train our model and
assess its robustness by subjecting it to various synthetic noisy
conditions during testing.
Highlight: It is to be noted that we use a single-stage
YOLOv5-based solution unlike different complex models and
execution pipelines used in the state-of-the-art [2], [3], [4].
B. Experimental Setup
Dataset: We evaluate our proposed framework by using the
synthetically generated clean spectrograms from [7]. The
dataset contains ∼ 1000 MATLAB generated spectrograms of
10 MHz spectrum for 20ms with ∼ 30dB signal to noise
ratio (SNR), emulating a coastal region with 5 ESC sensors
along the coast with one LTE and one 5G base station (details
in [7]). Each spectrogram has either: (a) Radar and LTE, (b)
Radar and 5G, or (c) Radar, LTE, and 5G signals.
Training: We train the YOLOv5 architecture on 80% (vali-
dated on 5%) of the dataset from [7] using stochastic gradient
descent optimizer with batch size of 16 for 100 epochs.
Inference: We use the rest of the 15% of spectrograms for
inference. We also generate nine set of noisy versions of those
spectrograms following different noise levels for Gaussian,
Salt&Pepper, and Speckle noises, presented in Table II. A
snapshot of various generated noises is shown in Fig. 2.
Performance metrics: We use the standard performance
metrics such as recall, precision and mean average precision
for evaluating the training. During inference, we calculate the
detection accuracy as the true positives detected by the model
divided by the total true positives.
C. Experimental Analysis

We train the model on the clean spectrograms and use the
trained model to obtain detection accuracy of different signal
types in the noisy spectrograms during inference phase. The
training performance is presented in Table I while the results of
the inference phase are summarized in Table II. The inference
time for one spectrogram in google colab is 11ms.
• Observation: We observe that the trained model detects
radar signals with 100% accuracy on clean spectrograms. The
radar detection performance degrades significantly with high
noisy conditions for all types of noises, which is not the
case for LTE and 5G detection, as radar pulses are harder to
detect [3] and easier to miss compared to the more prominent
LTE and 5G signals. These numbers may change with a higher
detection threshold during inference, subjected to future work.
• Future Direction: We will employ sophisticated machine
learning-based training mechanism such as meta and transfer
learning techniques for improving robustness of Speclearn in
high noise conditions.

III. CONCLUSIONS
This paper presents a YOLOv5-based pipeline for radar

signal detection in shared spectrum scenarios. The pipeline
is trained on clean spectrograms and evaluated in noisy

(a) Gauss (L) (b) Gauss (M) (c) Gauss (H) (d) Spec (L)

(e) Spec (M) (f) Spec (H) (g) S&P (L) (h) S&P (M)

(i) S&P (H) (j) No-noise (k) No-noise
Fig. 2. Spectrograms under different noise conditions: (a) - (i) show different
levels of noises in all three types of simulated noises on the clean spectrogram
(j). The (k) shows the bounded radar signal in (j).
Table II: The detection performance. The radar signal detection performance
decreases significantly with more noise, unlike LTE and 5G signal detection.

Noise Type Noise Detection Acc. (%)
Variance Radar 5G LTE

None - 100 100 100
Low (0.012) 98.1 98.6 100

Gaussian Mid (0.05) 51.85 94.5 97.43
High (0.075) 21.3 90.4 98.7
Low (0.05) 97.2 98.6 100

Salt&Pepper Mid (0.12) 78.7 97.3 98.7
High (0.25) 8.33 100 100
Low (0.012) 99.1 98.6 100

Speckle Mid (0.025) 96.3 98.6 98.7
High (0.05) 0 100 100

environments. Our experiments reveal that increased noise
significantly hinders radar signal detection, compared to LTE
or 5G signal detection. This finding lays the groundwork
for our ongoing research, focusing on enhancing the model’s
robustness for detecting signals within shared spectrum amidst
extreme real-world noisy conditions.
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